Command line Training Set First Motif Summary of Motifs Termination Explanation


Search sequence databases for the best combined matches with these motifs using MAST.
Search sequence databases for all matches with these motifs using FIMO.
Find Genome Ontology terms associated with upstream sequences matching these motifs using GOMO.
Submit these motifs to BLOCKS multiple alignment processor.


MEME - Motif discovery tool

MEME version 4.3.0 (Release date: Sat Sep 26 01:51:56 PDT 2009)

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.sdsc.edu.

This file may be used as input to the MAST algorithm for searching sequence databases for matches to groups of motifs. MAST is available for interactive use and downloading at http://meme.sdsc.edu.


REFERENCE

If you use this program in your research, please cite:

Timothy L. Bailey and Charles Elkan, "Fitting a mixture model by expectation maximization to discover motifs in biopolymers", Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994.



TRAINING SET

DATAFILE= meme2/meme.fasta
ALPHABET= ACGT
Sequence name Weight Length Sequence name Weight Length
1 1.0000 36 2 1.0000 36
3 1.0000 36 4 1.0000 36
5 1.0000 36 6 1.0000 36
7 1.0000 36 8 1.0000 36
9 1.0000 36 10 1.0000 36
11 1.0000 36 12 1.0000 36
13 1.0000 36 14 1.0000 36
15 1.0000 36 16 1.0000 36
17 1.0000 36 18 1.0000 36
19 1.0000 36 20 1.0000 36
21 1.0000 36 22 1.0000 36
23 1.0000 36 24 1.0000 36
25 1.0000 36 26 1.0000 36
27 1.0000 36 28 1.0000 36
29 1.0000 36 30 1.0000 36
31 1.0000 36 32 1.0000 36
33 1.0000 36 34 1.0000 36
35 1.0000 36 36 1.0000 36
37 1.0000 36 38 1.0000 36
39 1.0000 36 40 1.0000 36
41 1.0000 36 42 1.0000 36
43 1.0000 36 44 1.0000 36
45 1.0000 36 46 1.0000 36
47 1.0000 36 48 1.0000 36
49 1.0000 36 50 1.0000 36
51 1.0000 36 52 1.0000 36
53 1.0000 36 54 1.0000 36
55 1.0000 36 56 1.0000 36
57 1.0000 36 58 1.0000 36
59 1.0000 36 60 1.0000 36
61 1.0000 36 62 1.0000 36
63 1.0000 36 64 1.0000 36
65 1.0000 36 66 1.0000 36
67 1.0000 36 68 1.0000 36
69 1.0000 36 70 1.0000 36
71 1.0000 36 72 1.0000 36
73 1.0000 36 74 1.0000 36
75 1.0000 36 76 1.0000 36
77 1.0000 36 78 1.0000 36
79 1.0000 36 80 1.0000 36
81 1.0000 36 82 1.0000 36
83 1.0000 36 84 1.0000 36
85 1.0000 36 86 1.0000 36
87 1.0000 36 88 1.0000 36
89 1.0000 36 90 1.0000 36
91 1.0000 36 92 1.0000 36
93 1.0000 36 94 1.0000 36
95 1.0000 36 96 1.0000 36
97 1.0000 36 98 1.0000 36
99 1.0000 36

COMMAND LINE SUMMARY

This information can also be useful in the event you wish to report a
problem with the MEME software.

command: meme meme2/meme.fasta -mod zoops -prior dirichlet -nostatus -dna -oc meme2/ 
model: mod= zoops nmotifs= 1 evt= inf
object function= E-value of product of p-values
width: minw= 8 maxw= 36 minic= 0.00
width: wg= 11 ws= 1 endgaps= yes
nsites: minsites= 2 maxsites= 99 wnsites= 0.8
theta: prob= 1 spmap= uni spfuzz= 0.5
em: prior= dirichlet b= 0.01 maxiter= 50
distance= 1e-05
data: n= 3564 N= 99
strands: +
sample: seed= 0 seqfrac= 1
Letter frequencies in dataset:
A 0.355 C 0.224 G 0.209 T 0.212
Background letter frequencies (from dataset with add-one prior applied):
A 0.355 C 0.224 G 0.209 T 0.212

P N
MOTIF 1 width = 15 sites = 15 llr = 163 E-value = 4.7e-007

SEQUENCE LOGO PNG LOGOS require CONVERT from ImageMagick; see MEME installation guide
Information Content
15.3 (bits)
Relative Entropy
15.7 (bits)
Download LOGO
Without SSC:[EPS][PNG]
With SSC:[EPS][PNG]
NAME START P-VALUE SITES
97 17 1.55e-07 CGTCTGAACG CCTTTCCGAAAGGTT TTTA
25 17 1.83e-07 ATAATCCCCA CTTTTCAGACGGCAT ACCA
9 15 1.83e-07 CGACCTTATG CTTTTCAGACGGCAT CCATTA
18 6 5.88e-07 ATGCCA CTTTTCCAACACGCT CAATCATCTT
31 15 1.79e-06 ATGCTGAATA TGTTTAAGAAAGGGT AAGCCA
81 14 2.93e-06 GCAAACGTGC CTTTTAAGAAAGGGA GAGCAAA
52 1 3.54e-06 C CGTTTCAGACGACCT CTCAAACAAG
99 5 3.88e-06 CCCTG CCTTTCAGATATGCT GCAAGGCGGT
84 15 4.25e-06 ACATCTCGTC TTTTACCGAAAGGAT TAAAAA
80 17 5.08e-06 GGGACCAAGC CGTTGGAGAAAGGGT TTAA
36 16 8.36e-06 ACATCTTTAA ATTTTCCGAAATTTT AAACA
41 12 9.80e-06 CATGGCGGCA CTTTGCGAAAACCGT TTACACAAA
35 1 1.33e-05 T TTTTTCCAACCTCTT TCATCAGGAA
7 12 1.33e-05 AATTCAAGCC ATTTGCCAAAACCGT CAAACACTA
50 18 3.98e-05 TCATCCGTAT TTTTTAAGAAAACCA TTA

Motif 1 block diagrams


Name
Lowest
p-value
Motifs
97 1.55e-07

+1
25 1.83e-07

+1
9 1.83e-07

+1
18 5.88e-07

+1
31 1.79e-06

+1
81 2.93e-06

+1
52 3.54e-06

+1
99 3.88e-06

+1
84 4.25e-06

+1
80 5.08e-06

+1
36 8.36e-06

+1
41 9.80e-06

+1
35 1.33e-05

+1
7 1.33e-05

+1
50 3.98e-05

+1
SCALE
| |
1 25

Motif 1 in BLOCKS format


to BLOCKS multiple alignment processor.
Motif 1 position-specific scoring matrix


Scan sequence databases for the best match in each sequence using MAST.
Motif 1 position-specific probability matrix


Scan sequence databases for all matches with this motif using FIMO.
Compare to known motifs in motif databases using Tomtom.
Find Genome Ontology terms associated with upstream regions matching this motif using GOMO.
Motif 1 regular-expression

[CT][TG]TT[TG][CA][AC][GA]A[AC][AG][GCT][CG][GCATA]T

Time 2.59 secs.

P N
SUMMARY OF MOTIFS


Combined block diagrams: non-overlapping sites with p-value < 0.0001


Name
Combined
p-value

Motifs
7 2.92e-04

+1
9 4.02e-06

+1
18 1.29e-05

+1
25 4.02e-06

+1
31 3.94e-05

+1
35 2.92e-04

+1
36 1.84e-04

+1
41 2.16e-04

+1
50 8.76e-04

+1
52 7.79e-05

+1
80 1.12e-04

+1
81 6.46e-05

+1
84 9.35e-05

+1
97 3.41e-06

+1
99 8.53e-05

+1
SCALE
| |
1 25

Motif summary in machine readable format.
Stopped because Stopped because nmotifs = 1 reached..



CPU: kodomo.fbb.msu.ru


EXPLANATION OF MEME RESULTS


The MEME results consist of:

MOTIFS

For each motif that it discovers in the training set, MEME prints the following information: