Command line Training Set First Motif Summary of Motifs Termination Explanation


Search sequence databases for the best combined matches with these motifs using MAST.
Search sequence databases for all matches with these motifs using FIMO.
Find Genome Ontology terms associated with upstream sequences matching these motifs using GOMO.
Submit these motifs to BLOCKS multiple alignment processor.


MEME - Motif discovery tool

MEME version 4.3.0 (Release date: Sat Sep 26 01:51:56 PDT 2009)

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.sdsc.edu.

This file may be used as input to the MAST algorithm for searching sequence databases for matches to groups of motifs. MAST is available for interactive use and downloading at http://meme.sdsc.edu.


REFERENCE

If you use this program in your research, please cite:

Timothy L. Bailey and Charles Elkan, "Fitting a mixture model by expectation maximization to discover motifs in biopolymers", Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994.



TRAINING SET

DATAFILE= MEME_200/meme.fasta
ALPHABET= ACGT
Sequence name Weight Length Sequence name Weight Length
1 1.0000 19 2 1.0000 19
3 1.0000 19 4 1.0000 19
5 1.0000 19 6 1.0000 19
7 1.0000 19 8 1.0000 19
9 1.0000 19 10 1.0000 19
11 1.0000 19 12 1.0000 19
13 1.0000 19 14 1.0000 19
15 1.0000 19 16 1.0000 19
17 1.0000 19 18 1.0000 19
19 1.0000 19 20 1.0000 19
21 1.0000 19 22 1.0000 19
23 1.0000 19 24 1.0000 19
25 1.0000 19 26 1.0000 19
27 1.0000 19 28 1.0000 19
29 1.0000 19 30 1.0000 19
31 1.0000 19 32 1.0000 19
33 1.0000 19 34 1.0000 19
35 1.0000 19 36 1.0000 19
37 1.0000 19 38 1.0000 19
39 1.0000 19 40 1.0000 19
41 1.0000 19 42 1.0000 19
43 1.0000 19 44 1.0000 19
45 1.0000 19 46 1.0000 19
47 1.0000 19 48 1.0000 19
49 1.0000 19 50 1.0000 19
51 1.0000 19 52 1.0000 19
53 1.0000 19 54 1.0000 19
55 1.0000 19 56 1.0000 19
57 1.0000 19 58 1.0000 19
59 1.0000 19 60 1.0000 19
61 1.0000 19 62 1.0000 19
63 1.0000 19 64 1.0000 19
65 1.0000 19 66 1.0000 19
67 1.0000 19 68 1.0000 19
69 1.0000 19 70 1.0000 19
71 1.0000 19 72 1.0000 19
73 1.0000 19 74 1.0000 19
75 1.0000 19 76 1.0000 19
77 1.0000 19 78 1.0000 19
79 1.0000 19 80 1.0000 19
81 1.0000 19 82 1.0000 19
83 1.0000 19 84 1.0000 19
85 1.0000 19 86 1.0000 19
87 1.0000 19 88 1.0000 19
89 1.0000 19 90 1.0000 19
91 1.0000 19 92 1.0000 19
93 1.0000 19 94 1.0000 19
95 1.0000 19 96 1.0000 19
97 1.0000 19 98 1.0000 19
99 1.0000 19 100 1.0000 19
101 1.0000 19 102 1.0000 19
103 1.0000 19 104 1.0000 19
105 1.0000 19 106 1.0000 19
107 1.0000 19 108 1.0000 19
109 1.0000 19 110 1.0000 19
111 1.0000 19 112 1.0000 19
113 1.0000 19 114 1.0000 19
115 1.0000 19 116 1.0000 19
117 1.0000 19 118 1.0000 19
119 1.0000 19 120 1.0000 19
121 1.0000 19 122 1.0000 19
123 1.0000 19 124 1.0000 19
125 1.0000 19 126 1.0000 19
127 1.0000 19 128 1.0000 19
129 1.0000 19 130 1.0000 19
131 1.0000 19 132 1.0000 19
133 1.0000 19 134 1.0000 19
135 1.0000 19 136 1.0000 19
137 1.0000 19 138 1.0000 19
139 1.0000 19 140 1.0000 19
141 1.0000 19 142 1.0000 19
143 1.0000 19 144 1.0000 19
145 1.0000 19 146 1.0000 19
147 1.0000 19 148 1.0000 19
149 1.0000 19 150 1.0000 19
151 1.0000 19 152 1.0000 19
153 1.0000 19 154 1.0000 19
155 1.0000 19 156 1.0000 19
157 1.0000 19 158 1.0000 19
159 1.0000 19 160 1.0000 19
161 1.0000 19 162 1.0000 19
163 1.0000 19 164 1.0000 19
165 1.0000 19 166 1.0000 19
167 1.0000 19 168 1.0000 19
169 1.0000 19 170 1.0000 19
171 1.0000 19 172 1.0000 19
173 1.0000 19 174 1.0000 19
175 1.0000 19 176 1.0000 19
177 1.0000 19 178 1.0000 19
179 1.0000 19 180 1.0000 19
181 1.0000 19 182 1.0000 19
183 1.0000 19 184 1.0000 19
185 1.0000 19 186 1.0000 19
187 1.0000 19 188 1.0000 19
189 1.0000 19 190 1.0000 19
191 1.0000 19 192 1.0000 19
193 1.0000 19 194 1.0000 19
195 1.0000 19 196 1.0000 19
197 1.0000 19 198 1.0000 19
199 1.0000 19 200 1.0000 19

COMMAND LINE SUMMARY

This information can also be useful in the event you wish to report a
problem with the MEME software.

command: meme MEME_200/meme.fasta -mod zoops -prior dirichlet -minw 6 -maxw 7 -nostatus -dna -oc MEME_200/ 
model: mod= zoops nmotifs= 1 evt= inf
object function= E-value of product of p-values
width: minw= 6 maxw= 7 minic= 0.00
width: wg= 11 ws= 1 endgaps= yes
nsites: minsites= 2 maxsites= 200 wnsites= 0.8
theta: prob= 1 spmap= uni spfuzz= 0.5
em: prior= dirichlet b= 0.01 maxiter= 50
distance= 1e-05
data: n= 3800 N= 200
strands: +
sample: seed= 0 seqfrac= 1
Letter frequencies in dataset:
A 0.274 C 0.230 G 0.276 T 0.220
Background letter frequencies (from dataset with add-one prior applied):
A 0.274 C 0.230 G 0.276 T 0.220

P N
MOTIF 1 width = 6 sites = 32 llr = 218 E-value = 6.7e-010

SEQUENCE LOGO PNG LOGOS require CONVERT from ImageMagick; see MEME installation guide
Information Content
10.6 (bits)
Relative Entropy
9.9 (bits)
Download LOGO
Without SSC:[EPS][PNG]
With SSC:[EPS][PNG]
NAME START P-VALUE SITES
192 4 4.32e-04 ATCC AAGGAG CAAAATTCA
179 7 4.32e-04 GATATAC AAGGAG AAAGTA
166 13 4.32e-04 CACTAGTAAT AAGGAG
160 4 4.32e-04 TGAA AAGGAG TCCATGTGA
158 5 4.32e-04 GGATA AAGGAG AAAAAATA
150 7 4.32e-04 TACAGAT AAGGAG GAGTGA
137 8 4.32e-04 CCGAATGA AAGGAG CGTCA
119 2 4.32e-04 TC AAGGAG GTGAAGTGAG
111 6 4.32e-04 TGAAGG AAGGAG CGGCATA
96 5 4.32e-04 GACGG AAGGAG GTGCCGCG
85 4 4.32e-04 AATA AAGGAG CGCCAATTA
82 7 4.32e-04 GGAACCG AAGGAG GCTCCA
77 5 4.32e-04 ACCTG AAGGAG GCCTGAAA
61 6 4.32e-04 GAGCGT AAGGAG ATTCTCA
60 7 4.32e-04 GACGAAT AAGGAG CAACAA
51 7 4.32e-04 GAAGGGG AAGGAG CCGCAG
22 6 4.32e-04 GTCCCG AAGGAG GACATCA
6 7 4.32e-04 ATTCTGC AAGGAG CAACGA
197 1 8.62e-04 C AAGGAA GGTGACAACT
194 3 8.62e-04 ACA AAGGAA ACGAAAACGA
173 3 8.62e-04 CGA AAGGAA CCTACATATA
142 6 8.62e-04 CGGCGG AAGGAA TTTGCGA
127 1 8.62e-04 C AAGGAA GGGTCCACGG
120 4 8.62e-04 TCAT AAGGAA CGTGCGTTA
102 6 8.62e-04 ACAACA AAGGAA AGAGAAA
101 2 8.62e-04 GG AAGGAA GGTTCGACCC
97 6 8.62e-04 CAAGAG AAGGAA CCAAGCA
2 1 8.62e-04 C AAGGAA TCCCGGTTTT
187 4 1.21e-03 ATCG AAGGAT TTGTTGACA
161 3 1.21e-03 TGA AAGGAT AATGAAATCA
151 7 1.21e-03 CTTACTG AAGGAT CTTCCA
103 6 1.21e-03 GGATGA AAGGAT TTTGGGA

Motif 1 block diagrams


Name
Lowest
p-value
Motifs
192 4.32e-04

+1
179 4.32e-04

+1
166 4.32e-04

+1
160 4.32e-04

+1
158 4.32e-04

+1
150 4.32e-04

+1
137 4.32e-04

+1
119 4.32e-04

+1
111 4.32e-04

+1
96 4.32e-04

+1
85 4.32e-04

+1
82 4.32e-04

+1
77 4.32e-04

+1
61 4.32e-04

+1
60 4.32e-04

+1
51 4.32e-04

+1
22 4.32e-04

+1
6 4.32e-04

+1
197 8.62e-04

+1
194 8.62e-04

+1
173 8.62e-04

+1
142 8.62e-04

+1
127 8.62e-04

+1
120 8.62e-04

+1
102 8.62e-04

+1
101 8.62e-04

+1
97 8.62e-04

+1
2 8.62e-04

+1
187 1.21e-03

+1
161 1.21e-03

+1
151 1.21e-03

+1
103 1.21e-03

+1
SCALE
|
1

Motif 1 in BLOCKS format


to BLOCKS multiple alignment processor.
Motif 1 position-specific scoring matrix


Scan sequence databases for the best match in each sequence using MAST.
Motif 1 position-specific probability matrix


Scan sequence databases for all matches with this motif using FIMO.
Compare to known motifs in motif databases using Tomtom.
Find Genome Ontology terms associated with upstream regions matching this motif using GOMO.
Motif 1 regular-expression

AAGGA[GA]

Time 2.59 secs.

P N
SUMMARY OF MOTIFS


Combined block diagrams: non-overlapping sites with p-value < 0.0001


Name
Combined
p-value

Motifs
SCALE
|
1

Motif summary in machine readable format.
Stopped because Stopped because nmotifs = 1 reached..



CPU: kodomo.fbb.msu.ru


EXPLANATION OF MEME RESULTS


The MEME results consist of:

MOTIFS

For each motif that it discovers in the training set, MEME prints the following information: